Modeling
Now this section is of least important so we’re going to be incredibly sloppy here. We’ll perform a simple train test split and create a simple Linear Regression model.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)
model = LinearRegression().fit(X_train, y_train)
model.score(X_test, y_test)
0.498875410976377
model.coef_
array([635.1964214])
model.intercept_
5810.549007860056
pyplot.scatter(X_test, y_test, color = 'red')
pyplot.plot(X_train, model.predict(X_train), color = 'blue')
pyplot.title('temperature_fahrenheight vs ice_cream_sales_usd (Test set)')
pyplot.xlabel('temperature_fahrenheight')
pyplot.ylabel('ice_cream_sales_usd')
pyplot.show()
While our model isn’t great, lets pretend we’re satisfied with it and move on to preparing to wrap our model in an API and getting it into production.